Cookie Preference Centre

Your Privacy
Strictly Necessary Cookies
Performance Cookies
Functional Cookies
Targeting Cookies

Your Privacy

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences, your device or used to make the site work as you expect it to. The information does not usually identify you directly, but it can give you a more personalized web experience. You can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, you should know that blocking some types of cookies may impact your experience on the site and the services we are able to offer.

Strictly Necessary Cookies

These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site may not work then.

Cookies used

ContactCenterWorld.com

Performance Cookies

These cookies allow us to count visits and traffic sources, so we can measure and improve the performance of our site. They help us know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies, we will not know when you have visited our site.

Cookies used

Google Analytics

Functional Cookies

These cookies allow the provision of enhance functionality and personalization, such as videos and live chats. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies, then some or all of these functionalities may not function properly.

Cookies used

Twitter

Facebook

LinkedIn

Targeting Cookies

These cookies are set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant ads on other sites. They work by uniquely identifying your browser and device. If you do not allow these cookies, you will not experience our targeted advertising across different websites.

Cookies used

LinkedIn

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties

OK
Become a Basic Member for free. Click Here

Network Answering Machine Detection - myth or reality? - J S - ContactCenterWorld.com Blog

Network Answering Machine Detection - myth or reality?

It has become traditional around this time of year for Sytel to comment on the ongoing debate over answering machine detection. Does AMD deliver real benefits to the call center? What about ‘false positives’? For some background, read our previous posts from May 2010 and May 2011.

The latest controversy is over Network Answer Machine Detection (i.e. AMD based on ISDN signaling, rather than sound patterns). Before we give our view on this, let’s review the context.

The standard method used by most vendors for many years is the cadence method. This is the analysis of bursts of volume (speech) interspersed with silence. One sample could be identified as the “Hello?” of a live person; another, the “Hello, we are not in right now...” of an answering machine/ voicemail service.

This method produces reliability of around 85%-90%. (Any claims from vendors to go above this are either based on wrong measurement, or biased sampling.) You may think that sounds quite good, but this means that 10% of answer machines will get put through to agents as live calls, and also crucially that 10% of the calls classified as machines are in fact live respondents, and hung up on. These are known as ‘false positives’, and here’s the problem. Ofcom regulation in the UK stipulates that a ‘reasoned estimate’ of these must be included in the calculation for abandoned calls. Under normal conditions, a ‘best case’ estimate of 90% reliability already pushes the abandoned call rate beyond Ofcom’s regulatory limit of 3% of all live calls. If you run AMD in the UK, you can say goodbye to any benefit from your predictive dialer.

As a result of this dilemma, many vendors have sought alternative methods of doing AMD in order to keep the practice alive. Two themes are recurrent; Network Answer Machine Detection and byte pattern recognition.

  1. Network Answering Machine Detection
    In our (informed) view, any claims to use AMD based on ISDN signaling are fatuous. It does not exist. If it did there would be no debate, everyone would be using it, detection rates would be 100% accurate and Ofcom's job would be made a lot easier.

  2. Byte pattern recognition
    This works by picking up encoded audio which follows defined sequences of bytes. This technique works but has very limited application. There is no such thing as a standard network voicemail message. Networks must offer consumer choice. Some consumers customise, some simply switch voicemail off and some networks have equipment that does not encode voicemail speech consistently. The result of this is that network voicemail can be reliably detected using byte pattern recognition in around 15% of cases in the UK.

The inescapable conclusion is (still) that AMD in the UK using the methods described above simply cannot deliver the low levels of nuisance calls that Ofcom rightly mandates. If anyone knows of other methods that are more accurate we’d love to hear about it.

If you are outside the UK and still convinced that you need AMD, then Sytel’s is a good as any. But our advice remains that use of AMD is bad practice, leading to bad customer relations and lower call center profits. As Sytel has always said: just switch it off.

For a more in-depth analysis, ask for a copy of our white paper on The Science Behind Answering Machine Detection.

Michael McKinlay - CEO, Sytel Limited

Publish Date: July 17, 2012 9:42 AM

ABOUT US IN 60 seconds!

Latest Americas Newsletter
both ids empty
session userid =
session UserTempID =
session adminlevel =
session blnTempHelpChatShow =
CMS =
session cookie set = True
session page-view-total =
session page-view-total =
applicaiton blnAwardsClosed =
session blnCompletedAwardInterestPopup =
session blnCheckNewsletterInterestPopup =
session blnCompletedNewsletterInterestPopup =