Cookie Preference Centre

Your Privacy
Strictly Necessary Cookies
Performance Cookies
Functional Cookies
Targeting Cookies

Your Privacy

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences, your device or used to make the site work as you expect it to. The information does not usually identify you directly, but it can give you a more personalized web experience. You can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, you should know that blocking some types of cookies may impact your experience on the site and the services we are able to offer.

Strictly Necessary Cookies

These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site may not work then.

Cookies used

Performance Cookies

These cookies allow us to count visits and traffic sources, so we can measure and improve the performance of our site. They help us know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies, we will not know when you have visited our site.

Cookies used

Google Analytics

Functional Cookies

These cookies allow the provision of enhance functionality and personalization, such as videos and live chats. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies, then some or all of these functionalities may not function properly.

Cookies used




Targeting Cookies

These cookies are set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant ads on other sites. They work by uniquely identifying your browser and device. If you do not allow these cookies, you will not experience our targeted advertising across different websites.

Cookies used


This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties


Here are some suggested Connections for you! - Log in to start networking.

Multi-skilled scheduling, can it be solved in theory? - Calabrio - Blog

Multi-skilled scheduling, can it be solved in theory?

Göran Svensson, Research Lead at Teleopti in the field of  Optimization and Systems Theory, recounts the key factors explored in his mathematical research into multi-skilled call centers. How can Quality of Service be maintained when scheduling multiple skills with a limited budget and number of available agents for certain skills?

This year I attended International Conference on Operations Research and Enterprise Systems (ICORES) 2018 in Portugal, where I presented my research results on resource allocations for a system of multi-class, multi-server queues. The ICORES conference covers topics in Operations Research (OR) and Systems Engineering. WFM is a subfield of these more general disciplines. The days were filled with interesting talks, many occurring in parallel sessions. One of the keynote speakers was a professor from Technion, which is one of the more prestigious universities for OR in general and WFM in particular. There were several presentations on optimization methods, resource management and decision analysis. The talks spanned most of the more mathematical parts of OR, from military logistics to fairness in healthcare scheduling.

I presented my work in the field of multi-skilled call centers and the corresponding decision processes. The problem is solved as a multi-objective optimization problem via the Marginal Allocation Algorithm with constraints on the total budget and availability of agents (customer-facing employees).

Sponsor message - content continues below this message

2022 '17th annual' Global Contact Center World Awards NOW OPEN

Enter your Center, Strategy, Technology Innovation, Teams and Individuals into the ONLY TRULY GLOBAL awards program - regarded by many as being like the Olympics for the Contact Center World! Join the best from over 80 nations and compete for the most prestigious awards out there!


Content continues ….

That a problem is multi-objective simply means that one tries to optimize several factors at the same time. Normally such a problem produces what is known as an efficient front or a pareto solution. This means that one gets a set of solutions where one goal cannot be improved without obtaining worse outcomes for the other goal(s). It is then commonly up to an expert to choose which of these solutions best serves their specific needs. An example would be the tradeoff between service quality and the cost of using more agents.

The first objective (goal) is to keep the cost of employed agents as low as possible, the second objective is to deliver as good a service to customers as possible. The cost of agents is kept low by using fewer agents while the quality of service improves with an increase in the number of agents employed. Now we can clearly see that there is a conflict between these two goals.

The service provided is measured by something known as a Quality of Service (QoS) measure. Average Speed of Answer (ASA), Service Level (SL, which is a type of Value-at-Risk measure for the ratio of calls, or other inbound contact types, answered within a certain amount of time) and probability of delay are different types of such QoS measures. In the presentation I focused on two QoS measures: One that is closely related to the Service Level measure, called the Conditional Value-at-Risk (CVaR), and the other which is based on the fraction of customers abandoning the queue before receiving service.

The CVaR measure is in many ways superior to the VaR type measure of Service Level. It has some nice mathematical features as well as providing a means to control the outcome, not just for the customers that receive service in time, but also lends itself to control the outcomes for the customers not serviced within the acceptable time.

The optimization method used is known as the Marginal Allocation Algorithm. It is an iterative algorithm that step by step adds the agent that provides the greatest marginal benefit and provides the corresponding efficient point. The main advantages of using this algorithm is that it is easy to implement and that it can solve large systems at a low computational cost. The main disadvantage is that it requires strong assumptions on the goal functions. One such requirement is that the functions should be what is known as convex (read more about convex functions here). Convexity is a characteristic that simplifies optimization procedures in general, which is in addition to the existence of many reliable software solvers for convex problems.

One important contribution of this work is to show that the CVaR (Conditional Value-at-Risk) measure is convex in the number of agents employed, thus it may be used in conjunction with the Marginal Allocation Algorithm.

In my case, a problem with N different queues, representing different skills, is considered when there is a budget constraint on the system, as well as a limit on the available agents with certain skills. In the work, I compare the two different choices of the two Quality of Service (QoS) measures, CVaR and abandonment based. I highlight the similarities as well as the differences. A large-scale system is also provided and then solved (quickly) to show the power of the Marginal Allocation Algorithm.

The paper, on which I based my presentation, had been peer reviewed by three external professionals and has been published in the proceedings booklet. I have also been invited to extend my paper and have it published in a book by the Springer publishing company, as a chapter. The audience was attentive and interested, which led to a fruitful discussion on measures.

This means that my purposed method can be used to procure the staffing needs for large queueing systems quickly. The CVaR measure is suited for situations where all customer service times are of importance, like in a healthcare situation.


Publish Date: August 10, 2018 5:00 AM

2021 Buyers Guide Knowledge Management


Combines knowledge management with call support as continue improvement.

eGain Corporation

eGain Knowledge + AI
eGain's knowledge management software, powered with Case-Based Reasoning, an Artificial Intelligence technology, lets you provide intranet or extranet access to the common knowledge base, enabling contact center agents to provide distinctive, productive, and brand-aligned experiences in every interaction, across all channels and touchpoints.

eGain Corporation

eGain Knowledge + AI
eGain Knowledge+AI™, the top-rated, analyst-awarded knowledge management software, guarantees quality customer service by infusing your customer service agents with knowledge, making all agents as productive as your best ones. By providing agents and other users a range of ways to get to information from the common knowledge base, it ensures fast, consistent, and accurate answers.


FuzeDigital offers an affordable yet comprehensive knowledge base to answer your consumers' and staff questions. When assistance is needed, our email management system ensures your timely and accurate delivery of responses. Used by companies large and small that seek to deflect common questions while providing exceptional support.


Happitu is your customer support team’s personal coach. It guides your team through every interaction with custom workflows, responsive scripting, and dynamic help topics.

Documentation in Happitu is automated, detailed, and consistent. Go beyond handle times and service levels with the rich insights of Happitu – from granular interaction data to aggregate data and trends – you get the complete CX journey!

We intentionally built the Happitu Workflow Designer with your customer support team in mind. Using our intuitive tools that provide quick and safe iteration, you eliminate the need to involve IT or Development. Yes, you will no longer have to dread submitting a change request to Devin from IT!

Try it free for 45 days!


Knowmax is a knowledge management software for enterprises. Customer service of any organization can leverage this tool to create, curate & distribute the knowledge at assisted as well as digital channels promoting self service.


Knowledge Management software
livepro are experts in Customer Experience Knowledge Management and are passionate about improving customer experience. livepro is feature-rich yet easy to use, delivering answers to agents – not long complex documents to dig through. This makes customer service quicker, easier and more efficient. Staff require next to no training on complex procedures thanks to livepro’s intuitive design, which brings confidence up and training costs down.


ProcedureFlow is a step by step visual guide that supports agents as they navigate company processes. With a knowledge management solution that simplifies complex information, employees can spend less time searching and focus on what they do best. ProcedureFlow’s simple and intuitive platform enables contact centers to quickly and easily create, maintain, and update company processes in real time. With ProcedureFlow, teams can work more efficiently, better serve customers, and drive results that matter most to their business.


Knowledge is your company's most valuable asset. An intelligent Knowledge Base can harness that asset, supporting your customers and empowering your agents.

Purpose-built with your users in mind, the knowledge base stores all information your customers need and search for, from policies to product details. Integral to CX, an intelligent knowledge base allows customers the freedom to self-serve whilst delivering them great results at their convenience.

Internally, the centralised knowledge base equips your employees with all the knowledge they require to assist customers, enhancing not only the way agents work, but the impact on CSAT.

Knowledge can be seamlessly integrated with your customer service tools to ensure complete coherence of information, even when it's updated.

View more from Calabrio

Recent Blog Posts:
Data is everything in the new era of customer serviceMay 20, 2019 5:00 AM
Real-Time Adherence – the art of smarter schedulingMay 8, 2019 5:00 AM
Evolving employee engagement with Workforce Management (WFM)April 30, 2019 5:00 AM
Guest Blog: There’s a brighter future for contact centre agentsApril 12, 2019 5:00 AM
Centralized or de-centralized WFM: 5 ways to strike the perfect balanceApril 8, 2019 5:00 AM
How patient are your customers? Erlang A may have the answerMarch 25, 2019 5:00 AM
Evaluating if the integration between your WFM & CX platform will be a big “Yes”February 25, 2019 5:00 AM
The whole organization is a customer service center – not everyone knows it yet!February 4, 2019 5:00 AM
Resistance to change – the arch nemesis of customer experienceJanuary 22, 2019 5:00 AM
5 steps to supercharge your customer service with contextual intelligenceJanuary 7, 2019 5:00 AM

About us - in 60 seconds!

Latest Americas Newsletter
both ids empty
session userid =
session UserTempID =
session adminlevel =
session blnTempHelpChatShow =
session cookie set = True
session page-view-total =
session page-view-total =
applicaiton blnAwardsClosed =
session blnCompletedAwardInterestPopup =
session blnCheckNewsletterInterestPopup =
session blnCompletedNewsletterInterestPopup =